China Professional Kitchen Cabinet Support Lift Gas Spring Gas Cylinder for Wall Bed vacuum pump distributors

Product Description

 

Types of gas springs

1. Support gas spring
Also called free-type gas spring. Support rod. It is the most widely used gas spring. It mainly plays a supporting role, with only the shortest and longest positions, and cannot stop by itself during the stroke. It is most widely used in mechanical equipment, furniture and other fields.

2. Lockable(Controllable) gas spring
The controllable gas spring can be locked at any position of the entire stroke, mainly through the controller (handle or cable) to achieve the effect, but also through the expansion and contraction of the piston rod. When the controller is adjusted to stop at the desired position, the valve will be closed and the live cooling rod will be locked in the required position. When locking occurs, locking can be achieved. However, if the locking force is exceeded, the locking function will no longer be effective.

3. Damper
Damper features reduce inertia and reduce speed by changing size. Its resistance changes with the speed of operation. The speed of the connected mechanism can be significantly damped.

4. Tensile gas spring
Also known as a traction gas spring, it uses an internal piston rod to achieve basic positioning. It is a special gas spring. The supporting gas spring is in the longest position when it is in a free state. After receiving external force, it moves from the longest position to the shortest position, while the free state of the traction gas spring is at The shortest position, running from the shortest to the longest when being pulled. Traction gas springs also have corresponding free type, self-locking type and so on.
 

 

YQ series air bombs are widely used in automobile, household, computer, fitness equipment, textile, printing, food, tobacco, woodworking and other machinery, and can play the role of lifting, suspending, closing and so on.

The product structure is reasonable, and the installation and maintenance are convenient. No external power is needed when working, saving energy. The lifting force is basically constant throughout the working stroke, and the end of the stroke has a buffer mechanism to avoid damage to components. The lifting member can be stopped in any position.
 

MODEL d(mm) D(mm) L(mm) S(mm) Force(kgf)
YQ13 Φ6 Φ15 100-550 50-200 5-35
YQ16 Φ8 Φ18 210-580 50-220 15-50
YQ20A Φ10 Φ22 300-700 100-300 30-80
YQ20B Φ12 Φ22 400-700 100-300 40-100
YQ25A Φ12 Φ27 600-800 220-350 60-130
YQ25B Φ14 Φ28 600-900 220-350 100-300
YQ25C Φ16 Φ28 600-1200 220-900 100-300

Gas spring installation location selection

 

There are 2 optional installation styles:
1. AO is less than the length of OB
2. OB is less than the length of AO

• Calculate the approximate stroke of the gas spring used when setting points A and B first:
The AB length after opening the lid minus the AB length after closing is equal to the required air bomb stroke;

Re-calculate whether the selected gas bomb praise is reasonable:
Gas spring stroke x2+80mm=AB length after opening.
 

Note: If the result obtained is greater than the length of AB, then it is necessary to move point A to point 0 or point B to move to point O to increase the length of point AB, that is, increase the length of the gas spring.

YK series gas springs are suitable for various occasions where the angle and height need to be adjusted. The piston rod can be stopped at any position under human manipulation. YK series gas springs operate flexibly, work stably and reliably. Can be designed and manufactured according to user requirements. For matters needing attention, please refer to the YQ series gas spring.
 

MODEL D(mm) d1(mm) L(mm) S(mm) Thread diameter Force(kgf)
Lockable YK Φ22 Φ10 225 60 M10*1 300-700
210 50
200 40
130 30
Φ28 760 280 300-900
175 50
170 42
155 40
128 28

 

This product is divided into pure oil, pure gas, oil and gas mixing, oil and gas separation and other construction machinery shock absorbers. This product is widely used in the shock absorption of engineering vehicle seats, which can effectively eliminate the vibration caused by the mechanical spring under the action of gravity. The aftershocks make the driver and passengers feel smooth and comfortable.

The oil-gas hybrid shock absorber has a good gas buffering effect and is the first choice shock absorber for modern engineering vehicle seats.

 

 

1. Samples can be offered to test before placing orders.
2. Low MOQ. Small orders are accepted.
3. OEM & ODM. Customization service is offered, including logo, laser marking.
4. Outstanding R&D ability,including product development and mould development.
5. Great pre-sales and after sales service.HangZhou Manjia Youchuang Household Products Co., Ltd. is a professional dampers and gas springs manufacturer which collects research, design, production and sale.

Our technical backbone has been engaged in the R&D and production of dampers for more than 22 years experience. The professional and well trained production department and QC staff could assure the perfect performance of our Dampers products. For the quality assurance rate of over 99.98%, and the stability of delivery time rate more than 99.96%.

Q1. Can I have a sample for testing?

A: Yes, samples are in stock, we will return sample fee back to you once you make a bulk order from us.

 

Q2. What about the lead time?

A: Sample needs 1-3 days, mass production time needs around 15 days for order quantity more than 10,000 pieces.

 

Q3. What is your MOQ?

A: Under normal circumstances, the order quantity is 1000 pieces. If you need less than 1,000 pieces, please contact customer service.

 

Q4. How do you ship the goods and how long does it take to arrive?
A: We usually ship by DHL, UPS, FedEx or TNT. It usually takes 3-5 days to arrive. Shipping time depend on the shipping way you choose.

 

Q5. Can I print my logo on the product?

A: Yes. Please inform us formally before our production and confirm the design firstly based on our sample. Customized design is available. OEM and ODM are offered.

 

Q6. Do you offer guarantee for the products?
A: Yes, we offer 1 year warranty to our products.

 

Q7: How to deal with the faulty?

A: Our products are produced in strict quality control system and the defective rate will be less than 0.2%.During the guarantee period, we will send new dampers with new order for small quantity. For defective batch products, we will repair them and resend them to you or we can discuss the solution.

 

Function: Pressed, Phonation, Buffer, Drive, Restoration, Measurement
Material: Alloy
Load Type: Compression
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

lift cylinder

How does a lift cylinder handle variations in fluid pressure and flow rate?

A lift cylinder is designed to handle variations in fluid pressure and flow rate in order to ensure smooth and controlled operation. Here's an explanation of how lift cylinders handle these variations:

1. Fluid Pressure:

Lift cylinders are typically part of a hydraulic system that utilizes pressurized fluid to generate the necessary force for lifting. The lift cylinder is designed to withstand varying fluid pressure levels. When the fluid pressure is increased, the lift cylinder can handle the additional force exerted on its piston. Conversely, when the fluid pressure decreases, the lift cylinder adjusts accordingly and maintains its functionality.

2. Flow Rate:

The flow rate of hydraulic fluid determines the speed at which the lift cylinder extends or retracts. Lift cylinders are designed to accommodate variations in flow rate. By controlling the flow rate of the hydraulic fluid through the use of control valves or flow control devices, operators can adjust the speed of the lift cylinder's movement. This allows for precise and controlled lifting operations.

3. Control Valves:

Control valves are an integral part of the hydraulic system that regulates the fluid pressure and flow rate. Lift cylinders are often equipped with control valves that enable operators to control the movement of the cylinder by adjusting the pressure and flow of the hydraulic fluid. These valves can be manually operated or automated, providing flexibility in handling variations in fluid pressure and flow rate.

4. Cylinder Design:

Lift cylinders are designed to be robust and durable, capable of withstanding variations in fluid pressure and flow rate. The cylinder's construction and materials are selected to ensure optimal performance under different operating conditions. Seals and other components within the lift cylinder are designed to maintain their functionality and prevent leakage, even when subjected to changes in fluid pressure and flow rate.

5. Fluid Control Systems:

In more advanced lift cylinder systems, fluid control systems may be employed to handle variations in fluid pressure and flow rate. These systems can include pressure relief valves, flow control valves, or proportional valves. Pressure relief valves protect the lift cylinder and the hydraulic system from excessive pressure, while flow control valves regulate the flow rate of the hydraulic fluid. Proportional valves provide precise control over both pressure and flow, allowing for fine-tuning of the lift cylinder's movement.

In summary, lift cylinders are designed to handle variations in fluid pressure and flow rate to ensure smooth and controlled lifting operations. With the use of control valves, robust cylinder design, and fluid control systems, lift cylinders can adapt to changes in fluid pressure and flow rate, providing reliable and efficient performance.

lift cylinder

How Does a Lift Cylinder Contribute to Precise Load Handling and Positioning?

A lift cylinder plays a crucial role in achieving precise load handling and positioning in various applications. It is a hydraulic component commonly used in material handling equipment, including forklifts, cranes, and other lifting devices. The lift cylinder utilizes hydraulic power to control the vertical movement of loads, allowing for precise and controlled lifting, lowering, and positioning. Here's a detailed explanation of how a lift cylinder contributes to precise load handling and positioning:

  1. Vertical Lifting:
  2. The primary function of a lift cylinder is to provide the vertical lifting force required to raise and lower loads. When hydraulic pressure is applied to the cylinder, it extends or retracts the piston rod, depending on the design. This controlled extension or retraction enables the lift cylinder to raise or lower the load with precision. The hydraulic system allows operators to adjust the lifting speed and control the movement of the cylinder, ensuring smooth and accurate load handling.

  3. Load Stability:
  4. One of the key factors in precise load handling is maintaining load stability throughout the lifting and positioning process. Lift cylinders are designed to provide a stable lifting platform by minimizing unwanted movements or vibrations. The hydraulic system, combined with the mechanical structure of the cylinder, offers excellent control over the load's vertical movement, preventing sudden shifts or instability. This stability allows operators to handle delicate or fragile loads without compromising their integrity.

  5. Positioning Control:
  6. A lift cylinder offers precise positioning control, enabling operators to place the load accurately at the desired location. By regulating the hydraulic pressure, operators can control the speed and direction of the cylinder's movement. This control allows for fine adjustments during the lifting or lowering process, ensuring that the load is positioned precisely according to the requirements. The hydraulic system offers responsiveness and sensitivity, allowing for real-time adjustments for optimal load placement.

  7. Load Balancing:
  8. Load balancing is essential for maintaining stability and preventing excessive stress on the lifting equipment. Lift cylinders are often used in combination with other hydraulic components, such as counterbalance valves or load sensing systems, to achieve load balancing. These systems monitor the load and adjust the hydraulic pressure within the lift cylinder to ensure that the load remains balanced during lifting and lowering operations. By maintaining load balance, the lift cylinder contributes to precise load handling and positioning, reducing the risk of accidents or damage.

  9. Controlled Speed and Acceleration:
  10. Precise load handling requires controlled speed and acceleration during lifting and lowering operations. Lift cylinders, integrated with hydraulic control valves, allow for precise adjustment of the lifting speed and acceleration profile. Operators can control the flow rate of hydraulic fluid entering or exiting the cylinder, regulating the speed of the piston's movement. This control over speed and acceleration enables smooth and gradual load handling, preventing sudden jolts or jerky movements that could affect load positioning accuracy.

  11. Force Feedback and Sensing:
  12. Some advanced lift cylinder systems incorporate force feedback mechanisms or load sensing capabilities. These features provide operators with real-time information on the load's weight or force exerted on the cylinder. By receiving feedback on the load conditions, operators can make precise adjustments to the lifting or lowering operation. This feedback mechanism enhances load handling precision, allowing operators to adapt to changing load characteristics and ensure accurate positioning.

A lift cylinder's ability to provide vertical lifting force, maintain load stability, offer precise positioning control, assist in load balancing, enable controlled speed and acceleration, and incorporate force feedback or load sensing capabilities all contribute to precise load handling and positioning. These features make lift cylinders valuable components in material handling equipment, ensuring safe and efficient handling of loads in various industries and applications.

lift cylinder

Can you explain the role of hydraulic fluid in a lift cylinder?

Hydraulic fluid plays a crucial role in the operation of a lift cylinder. It serves as the medium through which force is transmitted to generate motion and provide lifting or lowering capabilities. Here's an explanation of the role of hydraulic fluid in a lift cylinder:

1. Transmission of Force:

Hydraulic fluid acts as a medium for transmitting force within the lift cylinder. When pressurized, the hydraulic fluid applies force on the piston, which then transfers that force to the load through the rod. The force exerted by the hydraulic fluid is transmitted equally in all directions due to Pascal's law, allowing for effective lifting or lowering of heavy loads.

2. Energy Transfer:

Hydraulic fluid is responsible for transferring energy within the hydraulic system. The hydraulic fluid is pressurized by a pump, which converts mechanical energy into hydraulic energy. This pressurized fluid carries the energy to the lift cylinder, where it is converted back into mechanical energy to perform the lifting or lowering action. The ability of hydraulic fluid to store and transmit energy efficiently makes it ideal for power transmission in hydraulic systems.

3. Lubrication and Cooling:

Hydraulic fluid serves as a lubricant within the lift cylinder to reduce friction and wear between moving parts, such as the piston and the cylinder barrel. This lubrication helps to enhance the longevity and smooth operation of the cylinder components. Additionally, the hydraulic fluid also aids in cooling the system by absorbing heat generated during operation, preventing overheating and ensuring optimal performance.

4. Sealing and Contamination Control:

Hydraulic fluid plays a critical role in sealing the lift cylinder and preventing leakage. It works in conjunction with seals located between the piston and cylinder barrel, as well as around the rod, to create a tight and secure hydraulic system. The hydraulic fluid also helps to control contamination by keeping external contaminants, such as dirt and debris, from entering the cylinder and affecting its performance.

5. System Efficiency:

The properties of hydraulic fluid, such as its viscosity and flow characteristics, directly impact the efficiency of the lift cylinder system. The choice of the appropriate hydraulic fluid ensures smooth and efficient operation, minimizing energy losses and maximizing system performance.

In summary, hydraulic fluid plays a vital role in a lift cylinder by transmitting force, transferring energy, lubricating and cooling the system, sealing against leaks, controlling contamination, and contributing to system efficiency. It enables the lift cylinder to generate the necessary force and motion to lift or lower heavy loads, while also ensuring the smooth and reliable operation of the hydraulic system.

China Professional Kitchen Cabinet Support Lift Gas Spring Gas Cylinder for Wall Bed   vacuum pump distributorsChina Professional Kitchen Cabinet Support Lift Gas Spring Gas Cylinder for Wall Bed   vacuum pump distributors
editor by CX 2023-10-12